210 research outputs found

    The Big Five:Addressing Recurrent Multimodal Learning Data Challenges

    Get PDF
    The analysis of multimodal data in learning is a growing field of research, which has led to the development of different analytics solutions. However, there is no standardised approach to handle multimodal data. In this paper, we describe and outline a solution for five recurrent challenges in the analysis of multimodal data: the data collection, storing, annotation, processing and exploitation. For each of these challenges, we envision possible solutions. The prototypes for some of the proposed solutions will be discussed during the Multimodal Challenge of the fourth Learning Analytics & Knowledge Hackathon, a two-day hands-on workshop in which the authors will open up the prototypes for trials, validation and feedback

    Multimodal Challenge: Analytics Beyond User-computer Interaction Data

    Get PDF
    This contribution describes one the challenges explored in the Fourth LAK Hackathon. This challenge aims at shifting the focus from learning situations which can be easily traced through user-computer interactions data and concentrate more on user-world interactions events, typical of co-located and practice-based learning experiences. This mission, pursued by the multimodal learning analytics (MMLA) community, seeks to bridge the gap between digital and physical learning spaces. The “multimodal” approach consists in combining learners’ motoric actions with physiological responses and data about the learning contexts. These data can be collected through multiple wearable sensors and Internet of Things (IoT) devices. This Hackathon table will confront with three main challenges arising from the analysis and valorisation of multimodal datasets: 1) the data collection and storing, 2) the data annotation, 3) the data processing and exploitation. Some research questions which will be considered in this Hackathon challenge are the following: how to process the raw sensor data streams and extract relevant features? which data mining and machine learning techniques can be applied? how can we compare two action recordings? How to combine sensor data with Experience API (xAPI)? what are meaningful visualisations for these data

    GeV-Class two-fold CW linac driven by an arc-compressor

    Get PDF
    We present a study of an innovative scheme to generate high repetition rate (MHz-class) GeV electron beams by adopting a two-pass two-way acceleration in a super-conducting Linac operated in Continuous Wave (CW) mode. The beam is accelerated twice in the Linac by being re-injected, after the first pass, in opposite direction of propagation. The task of recirculating the electron beam is performed by an arc compressor composed by 14 Double Bend Achromat (DBA). In this paper, we study the main issues of the two-fold acceleration scheme, the electron beam quality parameters preservation (emittance, energy spread), together with the bunch compression performance of the arc compressor, aiming to operate an X-ray Free Electron Laser. The requested power to supply the cryogenic plant and the RF sources is also significantly reduced w.r.t a conventional one-pass SC Linac for the same final energy

    The AMY experiment to measure GHz radiation for Ultra-High Energy Cosmic Ray detection

    Get PDF
    The Air Microwave Yield (AMY) project aims to measure the emission in the GHz regime from test-beam induced air-shower. The experiment is using the Beam Test Facility (BTF) of the Frascati INFN National Laboratories in Italy. The final purpose is to characterize a process to be used in a next generation of ultra-high energy cosmic rays (UHECRs) detectors. We describe the experimental apparatus and the first test performed in November 2011

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore